
django-nap Documentation
Release 0.40.0

Curtis Maloney

Nov 18, 2019

Contents

1 Quick Start 3
1.1 Mapper/Views Quick Start . 3

2 Tutorials 5
2.1 Installation . 5
2.2 Mappers . 5
2.3 Views . 8
2.4 Authorisation . 11
2.5 Old Mapper Tutorial . 11

3 Mappers 25
3.1 Fields . 25
3.2 Mapper API . 27
3.3 field decorator: get/set . 28
3.4 Mapper functions . 29
3.5 ModelMappers . 30

4 Class-Based Views 33
4.1 Base Classes . 33
4.2 List Classes . 34
4.3 Single Object Classes . 35

5 RPC 37
5.1 Overview . 37
5.2 Usage . 37

6 Extras 39
6.1 HTTP Utilities . 39
6.2 Simple CSV . 41
6.3 Actions . 42

7 Examples 43
7.1 Case 1: Simple Blog API . 43
7.2 Case 2: Login View . 44

8 Changelog 47
8.1 Current . 47

i

8.2 History . 48

9 Indices and tables 65

Index 67

ii

django-nap Documentation, Release 0.40.0

Web APIs you can do in your sleep. . .

In the spirit of the Unix philosophy, Nap provides a few tools which each do one thing, and do it well. They are:

1. Data Mapper

Wrapper classes for providing JSON-friendly interfaces to your objects.

2. RESTful Class-Based Views

A collection of mixins and views for building class-based API views.

3. RPC View

A mixin for Django’s class-based views which allows a single url to provide multiple RPC methods.

Nap does not provide the wide range of features you see in tools like Django REST Framework, such as rate limiting,
token authentication, automatic UI, etc. Instead, it provides a flexible framework that makes it easy to combine with
other specialised apps.

Contents:

Contents 1

https://secure.travis-ci.org/funkybob/django-nap.png?branch=master

django-nap Documentation, Release 0.40.0

2 Contents

CHAPTER 1

Quick Start

Nap REST views work by combining Mappers with composible Class-Based Views.

Let’s see how you might got about providng an API for the Poll example from the Django tutorial.

1.1 Mapper/Views Quick Start

1. Create a Mapper for your Model in mappers.py

This is very much like defining a ModelForm.

from nap import mapper

from . import models

class QuestionMapper(mapper.ModelMapper):
class Meta:

model = models.Question
fields = '__all__'

2. Create some views in rest_views.py

from nap.rest import views

from . import mappers, models

class QuestionMixin:
model = models.Question
mapper_class = mappers.QuestionMapper

class QuestionListView(QuestionMixin,
views.ListGetMixin,

(continues on next page)

3

django-nap Documentation, Release 0.40.0

(continued from previous page)

views.ListPostMixin,
views.ListBaseView):

pass

class QuestionObjectView(QuestionMixin,
views.ObjectGetMixin,
views.ObjectPutMixin,
views.ObjectBaseView):

pass

The ListBaseView provides the core of any object list view, deriving from Django’s MultipleObjectMixin. Then we
mix in the default handlers for GET and POST actions.

Similarly, the ObjectBaseView supports single object access, deriving from Django’s SingleObjectMixin.

Where the list view has POST to create a new record, the object view has PUT to update an existing record.

3. Add your APIs to your URLs:

urlpatterns = [
url(r'^question/$',

QuestionListView.as_view(),
name='question-list'),

url(r'^question/(?P<pk>\d+)/$',
QuestionObjectView.as_view(),
name='question-detail'),

]

And we’re done. You can now access your Question model!

4 Chapter 1. Quick Start

CHAPTER 2

Tutorials

The next pages will guide you through some stages of adding an API to an app.

We’ll start assuming you have the polls app from the Django Tutorial, and we’ll add a JSON API to it.

Be sure, however, that you used Python 3 when creating your project, as django-nap no longer supports Python 2.

2.1 Installation

Installing django-nap is as simple as using pip:

pip install django-nap

It does not require being added to settings.INSTALLED_APPS, not does it require any settings to be added.

2.2 Mappers

Mappers help us to convert our Python objects, like model instances, into simpler type that are supported by JSON,
and back again.

They help us map between how we want our data viewed in the API, and how it’s viewed by the rest of the system.

Mappers use a declarative style, just like Django’s Models and Forms.

Also, just like Django Forms, there are ModelMappers to simplify building Mappers for models.

2.2.1 Question Mapper

So let’s start with the QuestionMapper. Create a new file in your poll/ app, and call it “mappers.py”

5

https://docs.djangoproject.com/en/1.11/intro/tutorial01/

django-nap Documentation, Release 0.40.0

Listing 1: polls/mappers.py

from nap import mapper

from . import models

class QuestionMapper(mapper.ModelMapper):
class Meta:

model = models.Question
fields = '__all__'

For anyone familiar with ModelForms, this should look very familiar.

So what does this get us? Well, let’s drop into a shell and try it out.

>>> from polls.mappers import QuestionMapper
>>> from polls.models import Question
>>> q = Question.objects.first()
>>> m = QuestionMapper(q)

So we can create a new instance of our mapper and “bind” it to our model instance.

From now on, accessing attributes on the mapper instance will extract values from that model instance.

>>> m.question_text
"What's new?"
>>> m.pub_date
'2017-06-17 05:30:58+00:00'

Notice that the pub_date field came out as a string, in ISO-8601 format.

This works both ways. We can set values on our model via the mapper:

>>> m.question_text = "So, what is new?"
>>> q.question_text
'So, what is new?'
>>> m.pub_date = '1975-11-05 23:30:00'
>>> q.pub_date
datetime.datetime(1975, 11, 5, 23, 30)

See that the ISO-8601 string was converted back to a datetime instance.

There’s also a helpful function to grab all the defined fields and return them as a dict:

>>> m._reduce()
{'pub_date': '2017-06-17 05:30:58+00:00', 'question_text': "What's new?", 'id': 1}

The built in RESTful views in django-nap use this method to create JSON serialisable data from your models.

Calculated Fields

What if, as well as the publication date, we want to provide the age?

We can define mapper fields that do “work” as simply as we would add property to a class:

6 Chapter 2. Tutorials

django-nap Documentation, Release 0.40.0

Listing 2: polls/mappers.py

from django.utils.timesince import timesince

class QuestionMapper(mapper.ModelMapper):
class Meta:

model = models.Question
fields = '__all__'

@mapper.field
def age(self):

return timesince(self.pub_date)

Of interest here is that the self passed to the getter function is not the QuestionMapper class, but the object it is bound
to - that is, our model instance.

2.2.2 Choice Mapper

The ChoiceMapper is just as simple:

Listing 3: polls/mappers.py

class ChoiceMapper(maper.ModelMapper):
class Meta:

model = models.Choice
fields = '__all__'

2.2.3 Updates

Besides setting each field individually, Mapper provides two approaches to updating your instance: _apply and
_patch. They update the instance from a dict, as well as validate the data passed.

_apply is used to update all the fields defined on the Mapper from a dict. If a field on the mapper is marked as
required, but is not provided in the dict, this will be treated as an error.

Alternatively, _patch is used to update only the fields provided.

Any validation errors raised by fields will be gathered and raised in a single ValidationError exception at the end of
processing. The errors will also be stored on the Mapper instance as _errors.

Readonly fields

But wait! We don’t want to let people alter the Question a Choice is assignd to!

We need to mark that field as read only.

For fields discovered from models, we can override their readonly nature in the Meta:

Listing 4: polls/mappers.py

class ChoiceMapper(maper.ModelMapper):
class Meta:

model = models.Choice
fields = '__all__'

(continues on next page)

2.2. Mappers 7

django-nap Documentation, Release 0.40.0

(continued from previous page)

readonly = {
'question': True,

}

And for a field, we can pass an argument when declaring it:

Listing 5: polls/mappers.py

@mapper.field(readonly=True)
def age(self):

return timesince(self.pub_date)

This will mean _apply and _patch will ignore values for this field.

2.3 Views

Now it’s time to make our data visible to the outside world.

django-nap builds on Django’s Class-Based Generic Views.

2.3.1 Question List

Now it’s time to add our question list endpoint.

First, we’ll define a common QuestionMixin class to help hold common definitions for list and object views:

Listing 6: polls/views.py

from nap.rest import views

from . import mappers, models

class QuestionMixin:
model = models.Question
mapper_class = mappers.QuestionMapper

Next we’ll define our QuestionListView, based on this and the ListBaseView fron nap:

Listing 7: polls/views.py

class QuestionListView(QuestionMixin,
views.ListBaseView):

pass

As it is, this view won’t do anything, as it has no get, post or other methods. What it does provide is Django’s
MultipleObjectMixin, along with nap’s MapperMixin and NapView classes.

To add the default GET behavior for a list, we mix in the ListGetMixin:

Listing 8: polls/views.py

class QuestionListView(QuestionMixin,
views.ListGetMixin,

(continues on next page)

8 Chapter 2. Tutorials

django-nap Documentation, Release 0.40.0

(continued from previous page)

views.ListBaseView):
pass

The ListGetMixin adds a simple get method, which will return a list of mapped instances of our model.

Let’s add our new view to the existing urls, but with a ‘api/’ prefix:

Listing 9: polls/urls.py

from django.conf.urls import url

from . import views

urlpatterns = [
ex: /polls/
url(r'^$', views.index, name='index'),
ex: /polls/5/
url(r'^(?P<question_id>[0-9]+)/$', views.detail, name='detail'),
ex: /polls/5/results/
url(r'^(?P<question_id>[0-9]+)/results/$', views.results, name='results'),
ex: /polls/5/vote/
url(r'^(?P<question_id>[0-9]+)/vote/$', views.vote, name='vote'),

url(r'^api/', include([
url(r'question/$', views.QuestionListView.as_view()),

]))
]

So we can now access our list of Questions at http://localhot:8000/api/question/ and should see something like this:

[
{

"id": 1,
"question_text": "What's new?",
"pub_date": "2017-06-17 05:30:58+00:00",
"age": "20\u00a0hours, 15\u00a0minutes"

}
]

Nested Records

That’s great, but a Question with no Choices isn’t much use, is it?

We can ask our mapper to render a list of related records using a ToMany field:

Listing 10: polls/mappers.py

class QuestionMapper(mapper.ModelMapper):
class Meta:

model = models.Question
fields = '__all__'

@mapper.field
def age(self):

return timesince(self.pub_date)

(continues on next page)

2.3. Views 9

http://localhot:8000/api/question/

django-nap Documentation, Release 0.40.0

(continued from previous page)

choices = mapper.ToManyField('choice_set')

The ToManyField will check if its value is a django.db.models.Manager, and call .all() on it if it is.

And now out output will look something like this:

[
{

"id": 1,
"age": "20\u00a0hours, 19\u00a0minutes",
"question_text": "What's new?",
"pub_date": "2017-06-17 05:30:58+00:00",
"choices": [1, 2]

}
]

By default, a ToManyField will only render the primary keys of the related objects. If you want to control how it’s
serialised, just specify a mapper on the field.

Listing 11: polls/mappers.py

choices = mapper.ToManyField('choice_set', mapper=ChoiceMapper)

Which will give us this output:

[
{

"pub_date": "2017-06-17 05:30:58+00:00",
"age": "20\u00a0hours, 22\u00a0minutes",
"question_text": "What's new?",
"id": 1,
"choices": [

{
"question": 1,
"choice_text": "First Choice",
"id": 1,
"votes": 0

},
{

"question": 1,
"choice_text": "Another Choice",
"id": 2,
"votes": 0

}
]

}
]

We really don’t need the question ID embedded there, so let’s define a new choice mapper which will exclude that.

Listing 12: polls/mappers.py

class InlineChoiceMapper(mapper.ModelMapper):
class Meta:

model = models.Choice

(continues on next page)

10 Chapter 2. Tutorials

django-nap Documentation, Release 0.40.0

(continued from previous page)

fields = '__all__'
exclude = ('question',)

And finally we see:

[
{

"choices": [
{

"votes": 0,
"id": 1,
"choice_text": "First Choice"

},
{

"votes": 0,
"id": 2,
"choice_text": "Another Choice"

}
],
"question_text": "What's new?",
"age": "20\u00a0hours, 27\u00a0minutes",
"pub_date": "2017-06-17 05:30:58+00:00",
"id": 1

}
]

2.4 Authorisation

Because django-nap uses Django compatible Class-Based Views, you can simply use the same mixins provided by
django.contrib.auth.

2.4.1 Login Required

Here is an example of a view which only permits logged in users to get/post Choices:

from django.contrib.auth.mixins import LoginRequiredMixin

class ChoiceListView(ChoiceMixin,
LoginRequiredMixin,
views.ListGetMixin,
views.ListPostMixin,
views.ListBaseView):

pass

2.5 Old Mapper Tutorial

In this tutorial we will write a small django-nap powered RESTful service for a to-do list application. The tutorial has
been tested against Django (1.8.3) and django-nap (0.30.4).

Instead of using a more ‘traditional’ Serialiser based approach to building the service, we will use nap’s powerful
Mappers and Django CBV mixins.

2.4. Authorisation 11

django-nap Documentation, Release 0.40.0

2.5.1 1. Setup

First things first, as with any Python programming application, we want to create a virtual environment sandbox for us
to manage our applications dependencies. Let’s get started by creating a virtual environment and activating it:

virtualenv -p python3 nap-todo
source nap-todo/bin/activate

If you see (nap-todo) prefixed to all of your terminal commands you’ll know that you correctly created and activated
the virtual environment.

Next we’re going to need to install Django and django-nap in our virtual environment. Go ahead and execute the
following commands to do that:

pip install django
pip install django-nap

Great! We’ve now installed Django and django-nap and are ready to start building our API service. Let’s create a new
Django project.

django-admin.py startproject todoproject

Change directory into the newly created todoproject directory. We’ll now create a new Django app inside the todopro-
ject.

cd todoproject
python manage.py startapp todoapp

Don’t forget to add ‘todoapp’ to settings.INSTALLED_APPS!

That’s great, our project directory is all set up and ready for us to start creating the models that we will use in our
application.

2.5.2 2. Models

Our application is going to allow a User to create Lists of Items. Items represent task that are to be done. A List
represents collections of Items. Each Item is associated with a User (from django.contrib.auth). Let’s begin
by adding the models we want to the todoapp/models.py file.

class List(models.Model):
name = models.CharField(max_length=64)

def __str__(self):
return self.name

class Item(models.Model):
title = models.CharField(max_length=64)
list = models.ForeignKey('todoapp.List')
completed = models.BooleanField(default=False)
owner = models.ForeignKey('auth.User')

def __str__(self):
return self.title

Next we need to create a migration and migrate the database. In your terminal window execute the following com-
mands:

12 Chapter 2. Tutorials

django-nap Documentation, Release 0.40.0

python manage.py makemigrations
python manage.py migrate

Awesome let’s move on to the next step.

2.5.3 3. Mappers

We need Mappers to reduce Python objects into simple data types supported by JSON and back again. nap’s Mappers
are an alternative approach to traditional Serialisers. They serve the same function, but do it in slightly different ways.
A Mapper will map properties on itself to your object. This allows you to easily convert from JSON to Python objects
and vice-versa.

Mapper for User

Let’s start by creating a Mapper for the User model so that you can get a better feel for how it works. A ModelMapper
is a shortcut that creates a Mapper and automatically generates a set of fields for you based on the model. Similarly to
how ModelForms and Forms relate.

Let’s create a new file in the todoapp directory called mappers.py and add the following code to your
todoapp/mappers.py file:

from django.contrib.auth.models import User

from nap import mapper

class UserMapper(mapper.ModelMapper):
class Meta:

model = User
fields = '__all__'

The ModelMapper will create a Mapper for us and all we need to tell it is which model we want to map, and which
fields to use. As you can see we have told the ModelMapper to use __all__ of the User fields.

Mapper for List

Next let’s add a ModelMapper for the List model. This should be very similar to the ModelMapper we created for the
User model. Your todoapp/mappers.py file should now look like this:

from django.contrib.auth.models import User

from nap import mapper

from . import models # Don't forget this

class UserMapper(mapper.ModelMapper):
class Meta:

model = User
fields = '__all__'

class ListMapper(mapper.ModelMapper):
(continues on next page)

2.5. Old Mapper Tutorial 13

django-nap Documentation, Release 0.40.0

(continued from previous page)

class Meta:
model = models.List
fields = '__all__'

Mapper for Item

Next let’s add a ModelMapper for the Item model. This ones a little different though because there are some more
complicated fields in the Item model than there are in our User and List models. Let’s start by implementing the parts
of the ItemMapper we know. We’re going to add a ModelMapper for Item to our code in the todoapp/mappers.py file
so that it looks like this:

from django.contrib.auth.models import User

from nap import mapper

from . import models

class UserMapper(mapper.ModelMapper):
class Meta:

model = User
fields = '__all__'

class ListMapper(mapper.ModelMapper):
class Meta:

model = models.List
fields = '__all__'

class ItemMapper(mapper.ModelMapper):
class Meta:

model = models.Item
fields = '__all__'
exclude = ['owner', 'list']

As you can see we’ve defined the model and fields we want, but this time we’re also telling the ModelMapper which
fields to exclude. We’re going to exclude the more complicated Foreign Key fields, owner and list, and deal with them
later.

Now that we’ve got our Mappers implemented for all of our models, we can go on to create the URLs and views for
our RESTful service.

2.5.4 4. Class-Based Views and URLs

Let’s being by add a pattern for /api/ to our root url configuration (todoproject/urls.py). Your root url configuration
should look something like this now:

from django.conf.urls import include, url
from django.contrib import admin

urlpatterns = [

(continues on next page)

14 Chapter 2. Tutorials

django-nap Documentation, Release 0.40.0

(continued from previous page)

url(r'^admin/', include(admin.site.urls)),
url(r'^api/', include('todoapp.urls')),

]

You’ll notice that we’ve used include to point all requests to /api/ on to 'todoapp.urls' but if you’ve been
following closely you’ll realise we don’t actually have a module called todoapp.urls! Let’s fix that up quickly. . . create
a urls.py file in the todoapp directory. Now we can edit the todoapp/urls.py file and start to think about what endpoints
we want to create. I like to write mine in the urls.py file as comments, and uncomment them as I write the view code.

List of endpoints in words

1. Get a list of all of the List resources

2. Add a new List resource to the list of List resources

3. Get a single instance of a List resource

4. Get a list of all of the Item resources

5. Add a new Item resource to the list of Item resources

6. Get a single instance of an Item resource

7. Authenticate a users username and password combination

Let’s add some endpoints (as comments) to the todoapp/urls.py file that will achieve this. I’ve added a comment next
to each endpoint that explains which of the “List of endpoints in words” section the url will handle.

from django.conf.urls import include, url

from . import views

urlpatterns = [
/api/list/ # GET will deal with (1) and POST will deal with (2)
/api/list/<id>/ # GET will deal with (3)
/api/item/ # GET will deal with (4) and POST will deal with (5)
/api/item/<id>/ # GET will deal with (6)
/api/login/ # POST will deal with 7

]

Writing the view: list of List

Now that we know what endpoints we are planning to build, and what each will need to do we can create the views
that will process the requests. We’re going to start by implementing (1) which requires us to: “get a list of all of the
List resources”.

Lets add the following code to the todoapp/views.py file:

from nap.rest import views

from . import mappers
from . import models

class ListMixin:
(continues on next page)

2.5. Old Mapper Tutorial 15

django-nap Documentation, Release 0.40.0

(continued from previous page)

model = models.List
mapper_class = mappers.ListMapper

class ListListView(ListMixin,
views.ListBaseView):

pass

Given we want to get a list of all the List resources, we will use the nap.rest.views.ListBaseView as a
starting point. The ListBaseView combines ListMixin (which extends Django’s MultipleObjectMixin) with View.
From the Django docs: “MultipleObjectMixin can be used to display a list of objects.” This sounds like what we need!

Adding GET functionality: list of List

We do however want to use nap.rest.views.ListGetMixin which provides the get() method for lists. This
means the HTTP verb GET can now be used with our view. We need to update our ListListView(views.
ListBaseView) class to include the ListGetMixin so let’s do that.

Update your todoapp/views.py file to look like this:

from nap.rest import views

from . import mappers
from . import models

class ListMixin:
model = models.List
mapper_class = mappers.ListMapper

class ListListView(ListMixin,
views.ListGetMixin,
views.ListBaseView):

pass

Adding POST functionality: list of List

We decided when planning our URLs, that to add a List resource to the list of Lists, we’d POST to the same url
(/api/list/). That’s as simple as including the ListPostMixin to the ListListView. This will provide the post()
method which will allow us to use the POST HTTP verb.

Let’s go ahead and do that now. Update your todoapp/views.py file to look like this:

from nap.rest import views

from . import mappers
from . import models

class ListMixin:
model = models.List
mapper_class = mappers.ListMapper

(continues on next page)

16 Chapter 2. Tutorials

django-nap Documentation, Release 0.40.0

(continued from previous page)

class ListListView(ListMixin,
views.ListPostMixin,
views.ListGetMixin,
views.ListBaseView):

model = models.List
mapper_class = mappers.ListMapper

Defining the URL: list of List

One last thing before we take our API for a test drive. We need to uncomment the api endpoint for /api/list/ and
actually write the proper URL pattern. We’re going to cheat a little here and use the inbuilt Django @csrf_exempt
decorator to bypass CSRF, but please ALWAYS use CSRF in production code.

Update your todoapp/urls.py to look like this:

from django.conf.urls import include, url
from django.views.decorators.csrf import csrf_exempt

from . import views

urlpatterns = [
url(r'^list/$', csrf_exempt(views.ListListView.as_view())),
/api/list/<id>/ # GET will deal with (3)
/api/item/ # GET will deal with (4) and POST will deal with (5)
/api/item/<id>/ # GET will deal with (6)
/api/login/ # POST will deal with 7

]

You can see that we’ve mapped the list/ endpoint to ListListView class that we wrote earlier. Now that we have built
the functionality to create Lists and view Lists it’s time to see if our API works.

Testing with Python Requests: list of List

We’ll use Python Requests (http://www.python-requests.org/) to POST a List object to our database. In a terminal
window that you have activated your virtual environment in, run your HTTP server with python manage.py
runserver. Open up a second terminal window, active your virtual environment as before. Install Requests with
pip install requests. Open the Python interpreter by typing python at the console. This is not a tutorial on
using requests so just enter this boilerplate code into your Python interpreter:

import requests
payload = {'name': 'my demo list'}
r = requests.post("http://127.0.0.1:8000/api/list/", params=payload)
r.status_code

The result of r.status_code should be HTTP 201 Created. This will confirm that we’ve created a list in our
database with the name ‘my demo list’. You can confirm this by looking at the admin interface at http://127.0.0.1:
8000/admin. Remember you may need to create a superuser in order to use the admin interface.

So now that we’ve got a List instance in our database, we can execute a GET to the /api/list/ endpoint and we should
receive a JSON response. We don’t need to use Requests for this because our browser provides all the GET func-
tionality that we need. Simply load the url http://127.0.0.1:8000/api/list/ in your browser and you should see a JSON

2.5. Old Mapper Tutorial 17

http://www.python-requests.org/
http://127.0.0.1:8000/admin
http://127.0.0.1:8000/admin
http://127.0.0.1:8000/api/list/

django-nap Documentation, Release 0.40.0

representation of all of the lists (at this stage only 1) in your database. You should play around with Requests and add
some more List instances to the database.

Recap: list of List

So a quick recap of what we’ve done before we move on. We’ve created a List database model and a ModelMapper
that maps our Python models to JSON and vice-versa. We’ve created a ListListView, which handles both GETing all
our List instances in the database and POSTing new instances to our database. We’ve also then mapped our /api/list/
url to that view which allows external clients to use our API.

Not bad huh? We’ll repeat the process and write view classes and corresponding url patterns for the other endpoints
that we defined earlier.

Writing the views: object of List

We’re now going to write the view that will return a single instance of a List object. Similar to how we used the
nap.rest.views.ListBaseView mixin when writing our list of List view, we’re now going to use the Ob-
jectBaseView mixin. The ObjectBaseView combines ObjectMixin (which extends Django’s SingleObjectMixin) with
View. From the Django docs: “SingleObjectMixin provides a mechanism for looking up an object associated with the
current HTTP request.” Again, this sounds like what we need!

Lets add the following code to the todoapp/views.py file:

class ListObjectView(ListMixin,
views.ObjectBaseView):

pass

Adding GET functionality: object of List

You should be getting a lot more comfortable with how nap uses the Django Class-Based View. Lets add GET
functionality to our ListObjectView. In a similar fashion to how we have done throughout this tutorial we’ll simply
include one of the powerful mixins. Namely, the ListObjectView mixin.

The todoapp/views.py file should now look like this:

from nap.rest import views

from . import mappers
from . import models

class ListMixin:
model = models.List
mapper_class = mappers.ListMapper

class ListListView(ListMixin,
views.ListPostMixin,
views.ListGetMixin,
views.ListBaseView):

pass

class ListObjectView(ListMixin,
(continues on next page)

18 Chapter 2. Tutorials

django-nap Documentation, Release 0.40.0

(continued from previous page)

views.ObjectGetMixin,
views.ObjectBaseView):

pass

Defining the URL: object of List

Lets quickly add a URL to actually call this view and then we can test to actually see if it works.

Add this url to your todoapp/urls.py file:

url(r'^list/(?P<pk>\d+)/$', csrf_exempt(views.ListObjectView.as_view())),

Again we’re using the csrf_exempt() decorator for the sake of this tutorial.

Testing: object of List

We are only allowing the HTTP GET verb to be used with this view. That means we don’t need to use Requests
(although you certainly could) to test it. All you need to do is access the url we defined above with your web browser.
Let’s do just that and access the following url: http://127.0.0.1:8000/api/list/1/.

A quick explanation of what’s happening here: the /1/ component of your URL corresponds to the (?P<pk>d+) regular
expression in the url tuple. You can change the value of the pk component to retrieve an individual object view of any
List instance. At this stage there’s not much in a detail view - only the List title, but we’re going to go on and add a bit
more content next.

Quick pass through views for Item

So far we’ve built the GET and POST functionality for our List resource. You should be able to replicate the process
we went through above and build GET and POST functionality for the Item resource yourself. I’m going to paste the
code for that below, but I recommend you try do it yourself first! Note, the code below excludes the more complicated
foreign key fields which we will build together.

Add the following to todoapp/views.py:

class ItemMixin:
model = models.Item
mapper_class = mappers.ItemMapper

class ItemListView(ItemMixin,
views.ListPostMixin,
views.ListGetMixin,
views.ListBaseView):

pass

class ItemObjectView(ItemMixin,
views.ObjectGetMixin,
views.ObjectBaseView):

pass

Don’t forget to update todoapp/urls.py with the URL tuples that will call these views:

2.5. Old Mapper Tutorial 19

http://127.0.0.1:8000/api/list/1/

django-nap Documentation, Release 0.40.0

url(r'^item/$', csrf_exempt(views.ItemListView.as_view())),
url(r'^item/(?P<pk>\d+)/$', csrf_exempt(views.ItemObjectView.as_view())),

2.5.5 5. Update Mappers

Lets start modifying our Mappers so that we can serialise any extra fields, including related field sets and Foreign Key
fields.

ListMapper: List item_set()

If we were writing a client application to consume the /api/list/ API endpoint, we would probably want to include all
of the Item’s that are in a List. Essentially that means we want to define a proxy field on the model, which means we’re
going to add another field called items to our Mapper.

Your ListMapper class in todoapp/mappers.py should look like this now:

class ListMapper(mapper.ModelMapper):
class Meta:

model = models.List
fields = '__all__'

@mapper.field
def items(self):

'Produces a list of dicts with pk and title.'
return self.item_set.all()

You can see that we are using the field decorator to provide the get functionality we want. If you try to access
the http://127.0.0.1:8000/api/list/1/ URL though, you’ll notice Django raises a TypeError: Item is not JSON
serializable. So we’re going to use a handy shortcut and cast our item_set into a Python list.

Change the return line of the item so that your class looks like this:

class ListMapper(mapper.ModelMapper):
class Meta:

model = models.List
fields = '__all__'

@mapper.field
def items(self):

'Produces a list of dicts with pk and title.'
return list(

self.item_set.values()
)

This will return a list of Item dictionaries - [{<Item>},{<Item>} ... {<Item>}]. Lets get rid of all the
excess Item data and only return the pk’s and and title’s, change our queryset definition to this: self.item_set.
values('pk', 'title').

ItemMapper: get/set an owner (User)

When we create an Item object (via an HTTP POST) we will pass it an id value which represents the primary key
of the User who owns it. That means we need to update our ItemMapper and tell it how to set the owner field (User
foreign key). Again we’ll use the field decorator to provide the get functionality we want.

Update your ItemMapper in todoapp/mappers.py to look like this:

20 Chapter 2. Tutorials

http://127.0.0.1:8000/api/list/1/

django-nap Documentation, Release 0.40.0

class ItemMapper(mapper.ModelMapper):
class Meta:

model = models.Item
fields = '__all__'
exclude = ['owner', 'list']

@mapper.field
def owner_id(self):

return self.owner_id

We’re now telling the Mapper to include an owner_id field in the JSON representation of an Item, and to return the
owner_id (which is the primary key of the owner field). Lets also now add the set functionality for this field. This will
tell the Mapper how to take a JSON payload with an owner_id value and actually set the owner field on the model
instance. Again we’ll use the built in decorators to perform this, we’ll use the setter decorator to provide the set
functionality.

Update your ItemMapper in todoapp/mappers.py to look like this:

class ItemMapper(mapper.ModelMapper):
class Meta:

model = models.Item
fields = '__all__'
exclude = ['owner', 'list']

@mapper.field
def owner_id(self):

return self.owner_id

@owner_id.setter
def owner_id(self, value):

try:
self.owner = User.objects.get(pk=value)

except models.User.DoesNotExist:
raise ValidationError("Invalid owner_id")

Recap

You can see that we have modified our Mappers to use the field and setter decorators to provide the get/set
functionality. The field decorator extends the builtin property, and so supports @x.setter and @x.deleter
for setting the setter and deleter functions.

2.5.6 6. Authorisation

nap does not provide authentication, but it is very easy to combine nap with Django’s authentication system, or any
other third party authentication applications.

nap does provide authorisation through a permit decorator. You can use it to control the permissions of any handler
method. We’re going to create a login view that will authorise a user using the Django authentication system. This
means we’ll be able to make use of Django’s inbuilt forms too.

In your views.py add the following class:

from django.contrib import auth as django_auth # Don't forget this
from django.contrib.auth.forms import AuthenticationForm # Don't forget this

(continues on next page)

2.5. Old Mapper Tutorial 21

django-nap Documentation, Release 0.40.0

(continued from previous page)

from nap import http # Don't forget this

class LoginView(views.ObjectBaseView):
mapper_class = mappers.UserMapper

def get(self, request):
if request.user.is_authenticated():

return self.single_response(object=request.user)
return http.Forbidden()

def post(self, request):
if request.user.is_authenticated():

django_auth.logout(request)
return self.get(request)

form = AuthenticationForm(request, self.get_request_data())
if form.is_valid():

django_auth.login(request, form.get_user())
return self.get(request)

return self.error_response(form.errors)

We have defined a ObjectBaseView that will allow get() and post(). If logged in, GET will return a serialised repre-
sentation of the User, and if not logged in will return an HTTP 403. If not logged in, POST will authenticate the User
and either log them in, or return an error dictionary. POSTing to this view when already logged in will log the User
out.

2.5.7 7. Permissions

Now that we have created an authorisation endpoint and view, we can now leverage Django’s build in authentication
mixins to control access.

We’ve decided we only want to allow logged in users to post new messages, so we mix in the UserPassesTestMixin to
the ListListView class. All we need is to add a test_func to only check if a user is authentencated if it’s a POST.

from django.contrib.auth.mixins import UserPassesTestMixin

...

class ListListView(UserPassesTestMixin,
ListMixin,
views.ListPostMixin,
views.ListGetMixin,
views.ListBaseView):

def test_func(self):
if self.request.method == 'POST':

return self.user.is_authenticated:
return True

Let’s update our Item related views to only allow authorised Users to GET and POST. We’ll use Dango’s provided
LoginRequiredMixin.

Update the ItemListView class in todoapp/views.py to look like this:

22 Chapter 2. Tutorials

django-nap Documentation, Release 0.40.0

from django.contrib.auth.mixins import LoginRequiredMixin

...

class ItemListView(LoginRequiredMixin,
ItemMixin,
views.ListPostMixin,
views.ListGetMixin,
views.ListBaseView):

pass

2.5.8 8. Finished!

Well done. We’ve finished building our API service!

2.5. Old Mapper Tutorial 23

django-nap Documentation, Release 0.40.0

24 Chapter 2. Tutorials

CHAPTER 3

Mappers

3.1 Fields

3.1.1 The field decorator

The field decorator works exactly like property, however it will operate on the “bound” object, not the Mapper.

class field

Parameters

• required – Is this field required? Default: True

• default – The value to use if the source value is absent. May be a callable that takes no
arguments.

• readonly – Can the field be updated? Default: True

• null – Is None a valid valie? Default: False

The decorator can be used bare, or with arguments:

class M(Mapper):

@mapper.field
def foo(self):

return self.bar

@mapper.field(default=0)
def baz(self):

return self.qux

@baz.setter
def baz(self, value):

self.qux = value

As you can see, both the getter and setter of a field are defined the same way as with property.

25

django-nap Documentation, Release 0.40.0

3.1.2 Basic fields

For simple cases where the descriptor protocol is overkill, there is the Field class.

class Field(...)

Parameters

• attr – The name of the attribute on the bound object it gets/sets.

• required – Is this field required? Default: True

• default – The value to use if the source value is absent.

• readonly – Can the field be updated? Default: True

• null – Is None a valid valie? Default: False

class M(Mapper):
foo = Field('bar')
baz = Field('qux', default=0)

There are also typed fields:

• BooleanField

• IntegerField

• FloatField

• TimeField

• DateField

• DateTimeField

These will ensure the values stored are of the correct type, as well as being presented to JSON in a usable format.

3.1.3 Accessing extra state

Sometimes when serialising an object, you need to provide additional state. This can be done using a
context_field, which subclasses field, but passes any extra kwargs that were pased to Mapper instance
context to the getter and setter methods as an extra argument.

class context_field

Parameters

• required – Is this field required? Default: True

• default – The value to use if the source value is absent.

• readonly – Can the field be updated? Default: True

• null – Is None a valid valie? Default: False

The following is an example from the test suite:

class M(Mapper):
@fields.context_field
def scaled(self, context):

return self.value * context['factor']

@scaled.setter
(continues on next page)

26 Chapter 3. Mappers

django-nap Documentation, Release 0.40.0

(continued from previous page)

def scaled(self, value, context):
obj.value = value // self._context['factor']

m = M(o, factor=10)

Accessing m.scaled will now return the value multiplied by 10.

Models

3.1.4 Relation Fields

To help with relations, the models module includes two extra field types:

• ToOneField

• ToManyField

Both accept the same extra arguments:

class RelatedField

Parameters

• model – The model this field relates to

• mapper – (Optional) the mapper to use to reduce instances.

When the mapper is omitted, only the Primary Key of the related model will be used.

The ToManyField will work on any iterable, however if it’s passed a Manager it will call .all() before iterating
it. This makes it ideally suited for ManyToMany and reverse ForeignKey accessors.

3.2 Mapper API

All properties and methods are prefixed with _ to avoid polluting the namespace for your public fields.

class Mapper(obj=None, **kwargs)

_fields
A dict of (name: field) for all fields on this mapper.

_field_names
A list of field names on this mapper.

_reduce()
Returns a dict containing all the field values on the currently bound object.

_clean(data, full=True)
Allows whole-object validation.

Should update self._errors dict with any new validation errors.

The full flag indicates if this is an _apply (True) or _patch (False) cycle.

_patch(data)
Update all properties on this mapper supplied from the dict data.

Any omitted fields will be skipped entirely.

3.2. Mapper API 27

django-nap Documentation, Release 0.40.0

_apply(data)
Update all properties on this mapper fron the dict data.

If a field is marked as required it must have either a value provided, or a default specified.

All ValidationErrors raised by fields and their filters will be collected in a single ValidationError. You can
access this dict via the exception’s error_dict property.

As the name suggests, a Mapper will map properties on themselves to your object. They allow you to easily write
proxy objects, primarily for converting between serialised (JSON) and live (Python) formats of your resources.

Warning: Since a Mapper instance retains a reference to the object they are bound to, even when using << syntax,
instances MUST NOT be shared between threads.

3.3 field decorator: get/set

Mappers work using Python’s descriptor protocol, which is most commonly used via the property built-in. This
gives you full control over a Mapper’s properties. When constructing a Mapper you can pass an object for it to “bind”
to. All attribute access to the Mapper fields will proxy to this bound object.

Here’s an example to illustrate some of these concepts:

An object we want to create a Mapper for
class Person:

def __init__(self, first_name, last_name, is_alive):
self.first_name = first_name
self.last_name = last_name
self.is_alive = is_alive

from nap import mapper

A Mapper that we are creating for the Person object
class PersonMapper(mapper.Mapper):

'''
The self argument refers to the object we bind the Mapper to when we
construct it. It DOES NOT refer to the instance of the PersonMapper.
'''
@mapper.field
def name(self):

return '{}'.format(self.first_name, self.last_name)

We can use the Field class for simpler cases
first_name = mapper.Field('first_name')
last_name = mapper.Field('last_name')
is_alive = mapper.Field('is_alive')

Construct instances of the Person and a Mapper classes
person = Person('Jane', 'Doe', 22, True)
mapper = PersonMapper(person)

See ‘Fields‘_ for more details.

28 Chapter 3. Mappers

django-nap Documentation, Release 0.40.0

3.4 Mapper functions

A Mapper supports several methods:

_reduce() will reduce the instance to its serialisable state, returning a dict representation of the Mapper.

_patch(data) will partially update (patch) a Mapper’s fields with the values you pass in the data dict. If validation
fails it will raise a ValidationError.

_apply(data) will fully update (put) a Mapper’s fields with the values you pass in the data dict. If you don’t pass
a field in the data dict it will try to set the field to the default value. If there is no default and the field is required it will
raise a ValidationError.

_clean(data, full=True) is a hook for final pass validation. It allows you to define your own custom cleaning
code. You should update the self._errors dict. The full boolean indicates if the calling method was _apply
(True) or _patch (False).

Here is some code to explain how these concepts work. We will continue to use the Person class and PersonMapper
class defined above.

Note that these methods only update the fields of the model instance. You will need to call save() yourself to commit
changes to the database.

Using _reduce:

p = Person('Jane', 'Doe', True)
m = PersonMapper(p)
reduced_p = m._reduce()
print(reduced_p)

Output: {'first_name': 'Jane', 'last_name': 'Doe', 'is_alive': True}

Using _apply:

m = PersonMapper()
m._apply({

"first_name": "Jane",
"last_name": "Doe",
"is_alive": False

})
reduced = m.reduce()
print(reduced)

Output: {'first_name': 'Jane', 'last_name': 'Doe', 'is_alive': False}

Using _patch:

p = Person('Jane', 'Doe', True)
m = PersonMapper(p)
m._patch({"last_name": "Notdoe"}) # This should patch last_name
reduced = m.reduce()
print(reduced)

Output: {'first_name': 'Jane', 'last_name': 'Notdoe', 'is_alive': True}

Using _clean:

class DeadPersonMapper(PersonMapper):
def _clean(self):

(continues on next page)

3.4. Mapper functions 29

django-nap Documentation, Release 0.40.0

(continued from previous page)

if self.is_alive:
raise ValidationError("Only dead people accepted to the morgue.")

m = DeadPersonMapper()
m._apply({'last_name': 'Doe', 'first_name': 'John', 'is_alive': True})

ValidationError

3.4.1 Shortcuts

As a convenience, Mappers support two shorthand syntaxes:

>>> data = mapper << obj

This will bind the mapper to the obj, and then call _reduce.

>>> obj = data >> mapper

This will call _patch on the mapper, passing data, and returning the updated object.

3.5 ModelMappers

A ModelMapper will automatically create a Mapper for a Django model. A ModelMapper behaves very similar
to a Django ModelForm, you control it by setting some fields in an inner Meta class.

The fields that can be set are:

class Meta

model
Default: None

The model this Mapper is for

fields
Default: []

The list of fields to use. You can set it to ‘__all__’ to map all fields.

exclude
Default: []

The list of fields to exclude from the Model

required
Default: {}

A map to override required values for fields auto-created from the Model.

readonly
Default: []

The list of fields which are read only.

Must not conflict with required.

30 Chapter 3. Mappers

django-nap Documentation, Release 0.40.0

You can rewrite the Mapper so that it subclasses ModelMapper. Here’s a new Person object that subclasses Django’s
models.Model:

from django.db import models

An Django models.Model we want to create a Mapper for
class Person(models.Model):

first_name = models.CharField(max_length=100)
last_name = models.CharField(max_length=100)
is_alive = models.BooleanField(default=True)

Here is the PersonMapper rewritten to use a ModelMapper:

from nap import mapper

This should reference the model package where we define Person
from . import models

class PersonMapper(mapper.ModelMapper):
class Meta:

model = models.Person
fields = '__all__'

You can still use field to get/set properties and fields on a ModelMapper. This is useful when the model contains some
properties that the ModelMapper cannot understand, or when you want to customise how certain fields are represented.

To illustrate this we will add a new Django field (models.UUIDField) to our model. UUIDField does not have a filter
built in to nap, so you will need to define your own get and set functionality using the field decorator.

Here is a Person model object with a UUIDField:

from django.db import models

An Django models.Model we want to create a Mapper for
class Person(models.Model):

first_name = models.CharField(max_length=100)
last_name = models.CharField(max_length=100)
is_alive = models.BooleanField(default=True)
uuid = models.UUIDField(default=uuid.uuid4, editable=False)

And here is a complete ModelMapper that will correctly handle this new type of field:

from nap import mapper

from . import models

class PersonMapper(mapper.ModelMapper):
class Meta:

model = models.Person
fields = '__all__'

@mapper.field(readonly=True)
def uuid(self):

return str(self.uuid) # Remember: self refers to the bound object.

3.5. ModelMappers 31

django-nap Documentation, Release 0.40.0

32 Chapter 3. Mappers

CHAPTER 4

Class-Based Views

Also included are some mixins for working with Django’s Class-Based Generic Views. As they follow the existing
CBV interfaces, they are compatible with existing decorators and other utilities.

At their core is the MapperMixin, which extends the :class:JsonMixin <nap.utils.JsonMixin>. This provides ways
to get the mapper to use for the request, and utility functions for returning empty, single object, and multiple object
responses.

Additionally it provides wrappers for these to use specific response codes, which can be configured on the class also.

4.1 Base Classes

class MapperMixin
All of the following classes are based on this.

response_class
The class to construct responses from.

Default: nap.http.JsonResponse

content_type
The default content type for responses.

Default: ‘application/json’

mapper_class
You must set this to the Mapper to use when processing requests and responses.

ok_status
Default: nap.http.STATUS.ACCEPTED

accepted_status
Default: nap.http.STATUS.CREATED

created_status
Default: nap.http.STATUS.NO_CONTENT

33

django-nap Documentation, Release 0.40.0

error_status
Default: nap.http.STATUS.BAD_REQUEST

HTTP Status codes to use for different response types.

get_mapper(obj=None)
Returns an instance of mapper_class

empty_response(**kwargs)
Returns an instance of response_class with no content.

single_response(**kwargs)
Return a response with a single object.

Will use self.object if object is not passed, or call self.get_object if self.object does not exist.

Will use self.mapper if mapper is not passed, or call self.get_mapper if self.mapper does not exist.

multiple_response(**kwargs)
Return a response with a list of objects.

Will use self.object_list if object_list is not passed, or call self.get_queryset() if self.object_list does not
exist.

Will use self.mapper if mapper is not passed, or call self.get_mapper() if self.mapper does not exist.

Will apply pagination if self.paginate_by is set or self.include_meta is True.

get_meta(page)
Returns pagination metadata for paginated lists.

accepted_response(**kwargs)
Returns an empty response with self.accepted_status

created_response(**kwargs)
Returns a single response with self.created_status.

deleted_response(**kwargs)
Returns an empty response with self.deleted_status.

error_response(error)
Passes the supplied error dict through nap.utils.flatten_errors, and returns it with status=self.error_status

4.2 List Classes

class ListMixin(MapperMixin, MultipleObjectMixin)
Base list mixin, extends Django’s MultipleObjectMixin.

ok_response(**kwargs)

Calls self.list_response(status=self.ok_response)

class ListGetMixin
Provides get() for lists.

class ListPostMixin
Provides post() for lists.

post_invalid(errors)

post_valid(**kwargs)

class ListBaseView(ListMixin, View)

34 Chapter 4. Class-Based Views

django-nap Documentation, Release 0.40.0

4.3 Single Object Classes

class ObjectMixin(MapperMixin, SingleObjectMixin)
Base single object mixin, extends Django’s SingleObjectMixin.

ok_response(**kwargs)
Calls self.single_response(status=self.ok_status)

class ObjectGetMixin
Provides get() for single objects.

class ObjectPutMixin
Provides put() for single objects.

put_valid(**kwargs)

put_invalid(errors)

class ObjectPatchMixin
Provides patch() for single objects.

patch_valid(**kwargs)

patch_invalid(errors)

class ObjectDeleteMixin
Provides delete() for single objects.

delete_valid(**kwargs)

class ObjectBaseView(ObjectMixin, View)

4.3.1 Example

Sample views.py that provides GET, PUT, PATCH, and DELETE methods for the Poll model:

from nap.mapper import ModelMapper
from nap.rest.views import (

ObjectGetMixin, ObjectPutMixin, ObjectPatchMixin, ObjectDeleteMixin,
ObjectBaseView,

)

from .models import Poll

class PollMapper(ModelMapper):
class Meta:

model = Poll
fields = ['question', 'pub_date']

class PollDetailView(ObjectGetMixin,
ObjectPutMixin,
ObjectPatchMixin,
ObjectDeleteMixin,
ObjectBaseView):

model = Poll
mapper_class = PollMapper

4.3. Single Object Classes 35

django-nap Documentation, Release 0.40.0

4.3.2 Example: Updating two objects

Here’s an example of updating two related objects in a single PATCH call.

class UserDetailView(ObjectGetMixin, ObjectBaseView):
model = User
mapper_class = UserMapper

def patch(self, request, *args, **kwargs):
data = self.get_request_data({})

self.object = user = self.get_object()

errors = {}

mapper = self.get_mapper(user)
try:

data >> mapper # This is shorthand for _patch
except ValidationError as e:

errors.update(dict(e))

profile_mapper = ProfileMapper(user.profile)
try:

data >> profile_mapper # This is shorthand for _patch
except ValidationError as e:

errors.update(dict(e))

if errors:
return self.patch_invalid(errors)

user.save()
user.profile.save()

return self.ok_response(object=user, mapper=mapper)

4.3.3 Example: Customising GET

Here’s an example of customising a GET call based on a querystring:

class QuestionListView(ListGetMixin, ListBaseView):
model = Question
mapper_class = QuestionMapper

def get(self, request, *args, **kwargs):
qset = self.get_queryset()

Apply filtering to get only questions for a particular poll
poll_id = request.GET.get('poll_id')
if poll_id:

qset = qset.filter(poll_id=poll_id)

self.object_list = qset
return self.ok_response(object_list=qset)

36 Chapter 4. Class-Based Views

CHAPTER 5

RPC

The RPC View allows your application to provide APIs that don’t mate up with REST patterns.

5.1 Overview

Any POST request with a X-RPC-Action header will be intercepted and treated as a RPC request. If there is a
method on the view class which matches the name in the header, and it’s been decorated as @method accessible, the
request data will be parsed, passed as keyword arguments to the method, and the result JSON encoded and returned.

5.2 Usage

Define a View using the Mixin:

from nap import rpc

class MathView(rpc.RPCView):

@rpc.method
def add(self, a, b):

return a + b

Add it to your URL patterns:

url(r'^rpc/$', MathView.as_view(), name'rpc-view'),

Invoke it from Javascript:

fetch('/rpc/', {
method: 'POST',
body: JSON.stringify({a: 5, b: 10}),
headers: {

(continues on next page)

37

django-nap Documentation, Release 0.40.0

(continued from previous page)

'X-RPC-Action': 'add',
'Content-Type': 'application/json'

},
})
.then(resp => resp.json())
.then(data => alert(`Result is: ${data}`); // "Result is: 15"

38 Chapter 5. RPC

CHAPTER 6

Extras

There are some extra tools provided to ease your development of APIs.

6.1 HTTP Utilities

In nap.http is a set of tools to go one step further than Django’s existing HttpResponse.

6.1.1 Status

Firstly, there is STATUS_CODES, which is a list of two-tuples of HTTP Status codes and their descriptions.

Also, and more usefully, there is the STATUS object. Accessing it as a dict, you can look up HTTP status code
descriptions by code:

>>> STATUS[401]
'Unauthorized'

However, you can also look up attributes to find out the status code:

>>> STATUS.UNAUTHORIZED
401

This lets it act as a two-way constant.

6.1.2 BaseHttpResponse

This class blends Django’s HttpResponse with Python’s Exception. Why? Because then, when you’re nested who-
knows how deep in your code, it can raise a response, instead of having to return one and hope everyone bubbles it all
the way up.

• BaseHttpResponse

39

django-nap Documentation, Release 0.40.0

– HttpResponseSuccess

* OK

* Created

* Accepted

* NoContent

* ResetContent

* PartialContent

– HttpResponseRedirect

* MultipleChoices

* MovedPermanently*

* Found*

* SeeOther*

* NotModified

* UseProxy*

* TemporaryRedirect

* PermanentRedirect

Items marked with a * require a location passed as their first argument. It will be set as the Location
header in the response.

– HttpResponseError

A common base class for all Error responses (4xx and 5xx)

– HttpResponseClientError(HttpResponseError)

* BadRequest

* Unauthorized

* PaymentRequired

* Forbidden

* NotFound

* MethodNotAllowed

* NotAcceptable

* ProxyAuthenticationRequired

* RequestTimeout

* Conflict

* Gone

* LengthRequired

* PreconditionFailed

* RequestEntityTooLarge

* RequestURITooLong

40 Chapter 6. Extras

django-nap Documentation, Release 0.40.0

* UnsupportedMediaType

* RequestedRangeNotSatisfiable

* ExpectationFailed

– HttpResponseServerError(HttpResponseError)

* InternalServerError

* NotImplemented

* BadGateway

* ServiceUnavailable

* GatewayTimeout

* HttpVersiontNotSupported

It will be clear that, unlike Django, these mostly do not start with HttpResponse. This is a personal preference, in that
typically you’d use:

from nap import http

...
return http.Accept(...)

except_response

In case you want to use these raiseable responses in your own views, Nap provides a except_response decorator.

from nap.http.decorators import except_response

@except_response
def myview(request):

try:
obj = Thing.objects.get(user=request.user)

except:
raise http.BadRequest()

return render(...)

The decorator will catch any http.BaseHttpResponse exceptions and return them as the views response.

6.1.3 Http404 versus http.NotFound

Generally in your API, you’ll want to prefer http.NotFound for returning a 404 response. This avoids being caught by
the normal 404 handling, so it won’t invoke your handler404.

6.2 Simple CSV

A generator friendly, unicode aware CSV encoder class built for speed.

>>> csv = Writer(fields=['a', 'b', 'c'])
>>> csv.write_headers()
u'a,b,c\n'

(continues on next page)

6.2. Simple CSV 41

django-nap Documentation, Release 0.40.0

(continued from previous page)

>>> csv.write([1, '2,', 'c'])
u'1,"2,",c\n'

Options:

Seprator:

SEP = u’,’

Quote Character:

QUOTE = u’”’

What to replace a QUOTE in a field with

ESCQUOTE = QUOTE + QUOTE

What to put between records

LINEBREAK = u’n’

ENCODING = ‘utf-8’

6.3 Actions

42 Chapter 6. Extras

CHAPTER 7

Examples

Sometimes, an example is much easier to understand than abstract API docs, so here’s some sample use cases.

7.1 Case 1: Simple Blog API

7.1.1 models.py

from django.db import models
from taggit.managers import TaggableManager

class Post(models.Model):
title = models.CharField(max_length=255)
author = models.ForeignKey('auth.User')
published = models.BooleanField(default=False)
content = models.TextField(blank=True)
tags = TaggableManager(blank=True)

7.1.2 mappers.py

from nap import mapper

class PostMapper(mapper.ModelMapper):
class Meta:

model = models.Post

@mapper.field(readonly=True)
def tags(self):

return list(obj.tags.values_list('name', flat=True))

43

django-nap Documentation, Release 0.40.0

7.1.3 views.py

from nap.rest import views

from . import mappers, models

class PostMixin:
model = models.Post
mapper_class = mappers.PostMapper

class PostList(PostMixin,
views.ListGetMixin,
views.BaseListMixin):

paginate_by = 12

class PostDetail(PostMixin,
views.ObjectGetMixin,
views.BaseObjectMixin):

pass

7.1.4 urls.py

from django.conf.urls import include, url

from . import views

urlpatterns = [
(r'^api/', include([

url(r'^post/$',
views.PostList.as_view(),
name='post-list'),

url(r'^post/(?P<pk>\d+)/$',
views.PostDetail.as_view(),
name='post-detail'),

])),
]

7.2 Case 2: Login View

Once you’ve defined a Mapper for your User model, you can provide this Login endpoint:

from django.contrib import auth
from django.contrib.auth.forms import AuthenticationForm
from django.utils.decorators import classonlymethod
from django.views.decorators.csrf import ensure_csrf_cookie

from nap import http
from nap.rest import views

from . import mappers

(continues on next page)

44 Chapter 7. Examples

django-nap Documentation, Release 0.40.0

(continued from previous page)

class LoginView(views.ObjectBaseView):
mapper_class = mappers.UserMapper

@classonlymethod
def as_view(cls, *args, **kwargs):

view = super().as_view(*args, **kwargs)
return ensure_csrf_cookie(view)

def get(self, request):
'''Returns the current user's details'''
if request.user.is_authenticated():

return self.single_response(object=request.user)
return http.Forbidden()

def post(self, request):
form = AuthenticationForm(request, self.get_request_data({}))
if form.is_valid():

auth.login(request, form.get_user())
return self.get(request)

return self.error_response(form.errors)

Note that it decorates as_view with ensure_csrf_cookie. This ensures the CSRF token is set if your site is a SPA.

You could even use the DELETE HTTP method for logout.

def delete(self, request):
auth.logout(request)
return self.deleted_response()

7.2. Case 2: Login View 45

django-nap Documentation, Release 0.40.0

46 Chapter 7. Examples

CHAPTER 8

Changelog

8.1 Current

8.1.1 v0.40.0 (2018-??-??)

Python and Django version support change

As of this release, Django 2.0+ is required.

As a result, Python 3.4+ is also required.

Incompatible Changes:

• nap.rest.views.BaseListView and name.rest.views.BaseObjectView have been renamed
to nap.rest.views.ListBaseView and nap.rest.views.ObjectBaseView respectively.

• nap.views.rest.MapperMixin.error_response now calls get_json_data on the errors pa-
rameter.

Enhancements:

• Mappers now use django.forms.utils.ErrorDict and django.forms.utils.ErrorList for
errors.

• nap.utils.JsonMixin.get_request_data now uses cgi.FieldStorage to parse request data,
allowing it to support files in multi-part bodies for PUT and PATCH requests.

• nap.mapper.fields.field will now default to readonly = True unless a setter is specified.

Removed:

• nap.utils.flatten_errors has been removed.

Bug Fixes:

• Make except_response use functools.update_wrapper to not disguise the view function.

47

django-nap Documentation, Release 0.40.0

8.2 History

8.2.1 v0.30.11 (2017-03-31)

Enhancements:

• Simplify nam.mapper.base.MetaMapper discovering fields.

• Simplify nap.mapper.models.MetaMapper accordingly.

Bug Fixes:

• Added a dummy post method to nap.rpc.views.RpcMixin so View believes POST is an acceptable
method.

• Fix fallback when looking for object/object_list/mapper in REST views.

8.2.2 v0.30.10 (2017-08-24)

Enhancements:

• JsonMixin will use request.content_type and request.content_params in Django 1.10+, instead of parsing them
itself.

• NapView now decorates the as_view response with except_response, instead of overriding dispatch.

• Simplified code that builds ModelMapper

• RPCView now uses NapView to handle exception responses.

• Micro-optimsations for nap.extras.simplecsv.Writer

Bug Fixes:

• A TypeError or ValueError raised in nap.mapper.Field.set will now be caught and raised as a
ValidationError.

8.2.3 v0.30.9 (2017-06-26)

Enhancements:

• Add MapperMixin.include_meta as an override to including meta in responses.

• Moved StreamingJSONResponse into nap.http.response

• Moved except_response into nap.http.decorators

8.2.4 v0.30.8 (2017-06-09)

Enhancements:

• MapperMixin.get_meta(page) was added to allow customising of meta-data in response.

Deprecations:

• MapperMixin no longer provides default values of None for mapper, object and object_list.

48 Chapter 8. Changelog

django-nap Documentation, Release 0.40.0

8.2.5 v0.30.7 (2017-06-07)

The prototype for context_field has been changed.

See documentation for details.

Enhancements:

• Allow ModelMapper to inherit its Meta from a parent.

• Add nap.http.StreamingJSONResponse.

• Add tools to help support generators in JSON encoding

• Changed context_field to pass the Mapper._context as the last argument to the getter and setter methods.

8.2.6 v0.30.6 (2017-05-29)

Enhancements:

• Added custom __set__ method for ToManyField so it can call set on the manager.

Bug Fixes:

• Don’t replace inherited fields with auto-added model fields.

• Return a list of PKs if no Mapper provided to ToManyField

8.2.7 v0.30.5 (2017-05-27)

Enhancements:

• Added pagination support to MapperMixin.multiple_response

• Import all fields into mapper namespace

• Allow passing **kwargs to all CBV valid_FOO methods.

Bug Fixes:

• Call all() on Manager instances in ToManyfield

Deprecations:

• Removed newrelic module, as it was only to support Publishers.

8.2.8 v0.30.4 (2017-05-25)

Enhancements:

• Added nap.utils.NapJSONEncoder to support __json__ protocol.

Bug Fixes:

• Fixed __new__ on field so subclasses work.

• Reworked context_field to work properly, and match docs.

8.2. History 49

django-nap Documentation, Release 0.40.0

8.2.9 v0.30.3 (2017-05-24)

Enhancements:

Bug Fixes:

• Using @foo.setter on a field will now retain other keyword arguments.

• RPCClient now sets Content-Type on request.

8.2.10 v0.30.2 (2017-05-23)

Enhancements:

• Began documenting the extras module.

Bug Fixes:

• Fixed ToOneField to reference self.related_model not self.model

8.2.11 v0.30.1 (2017-05-18)

Enhancements:

• fields will now raise and error when trying to set a value with no setter.

Bug Fixes:

• Include null in field constructor

• Set null correctly in fields on ModelMapper

• Handle null ForeignKey/OneToOneFields properly

Deprecations:

• Dropped nap.utils.digattr and nap.mapper.fields.DigField

• Typed fields no longer special case None

8.2.12 v0.30.0 (2017-05-16)

Python and Django version support change

Support for Python2 has been dropped.

Support for Django 1.7 is no longer tested.

Warning: API Breakage

Another large code reorganisation was undertaken. DataMapper has been renamed to Mapper, and large amounts
of its cod have been rewritten.

Filters are no longer supported.

Enhancements:

50 Chapter 8. Changelog

django-nap Documentation, Release 0.40.0

• Added readonly attribute to Mapper.field

• Added readonly list to ModelMapper.Meta

• All MapperMixin.*_response methods now accept kwargs, and try to setdefault their default behaviour in it.

• In PUT/POST REST views, the *_valid methods now accept kwargs and pass them to their response class.

• Added RPC Client example code.

• Dropped deprecated test class.

Bug Fixes:

• Corrected Mapper to work as documented for obj = data << dm

8.2.13 v0.20.3 (2017-05-09)

Bug Fixes:

• Handle None values properly in ModelFilter

8.2.14 v0.20.2 (2017-05-06)

Enhancements:

• Added nap.http.except_response decorator to handle exceptional responses in view functions.

• Finished updating nap.extras.actions.ExportCsv to work with DataMappers.

8.2.15 v0.20.1 (2017-05-04) . . . be with you!

Bug Fixes:

• Remove default_app_config [Thanks nkuttler]

8.2.16 v0.20.0 (2017-04-24)

WARNING: Major Refactor

All code related to Publishers and Serialisers have been removed.

Many

Enhancements:

• Add a common base class HttpResponseError for Status 4xx and 5xx responses.

• JsonMixin imports settings late to avoid problems

Deprecation:

• Removed backward compatibility shim for JsonResponse, now that we require Django 1.7

• Removed Publishers

• Removed Serialisers

• Removed auth - use Django’s built in mixins.

8.2. History 51

django-nap Documentation, Release 0.40.0

• Removed SerialisedResponseMixin

8.2.17 v0.14.9 (2015-12-08)

Enhancements:

• Dropped support for testing in older Django

• Add ModelFilter to ForeignKeys in ModelDataMapper

• Allow passing kwargs to JsonMixin.loads and JsonMixin.dumps

• Added ability to change the response class used in auth decorators.

• Added >>= to ModelDataMapper to allow applying to new model instance.

Bug Fixes:

• Add any fields not in a supplied Meta.fields for a ModelDataMapper to the excludes list to ensure model vali-
dation also excludes them.

• Fixed utils.JsonClient to actually work.

• Propery handle encoding in JsonMixin.get_request_data for PUT and PATCH.

8.2.18 v0.14.8 (2015-10-12)

Enhancements:

• Added Ripper class to utils.

• Use six.moves.urllib instead of our own try/except on import

• Micro-optimisation: Calculate fields and field names for DataMappers at declatation

• Added NapView to nap.rest.views to handle when custom http responses are raised.

• Change default DELETE response to be empty

• Added nap.rest.views.NapView to catch and return nap.http.BaseHttpResponse exceptions as responses.

Bug Fixes:

• Set safe=False in MapperMixin.empty_response

8.2.19 v0.14.7.1 (2015-09-29)

Enhancements:

• Simplified auth.permit_groups

Bug Fixes:

• On a DataMapper, if a Field’s default is callable, call it.

• Make _CastFiler and Date/Time filters skip to_python if value is of right type already.

52 Chapter 8. Changelog

django-nap Documentation, Release 0.40.0

8.2.20 v0.14.7 (2015-09-29)

Enhancements:

• Allow passing extra arguments to MapperMinix.ok_response

• Add required and default options for datamapper.field

• Add LoginRequiredMixin and StaffRequiredMixin to nap.rest.auth

• Allow use of custom JSONEncoder/JSONDecoder with JsonMixin

8.2.21 v0.14.6 (2015-09-14)

Enhancements:

• Make MapperMixin.single_response and MapperMixin.multiple_response get mapper, object, and queryset if
none is provided.

• Dropped testing support for older versions of Django

• Added DataMapper tutorial to docs (Thanks limbera!)

• Added ModelFilter to DataMapper

• Reworked Publisher URLs to be easier to customise, and more consistent

• Added test module

• ModelDataMapper now creates a new Model instance if not passed one at construction.

• Pass list of excluded fields to Model.full_clean()

8.2.22 v0.14.5.1 (2015-08-06)

Bug Fixes:

• Use six.string_types not str in flatten_errors

• Properly update error dict in ModelDataMapper._clean

8.2.23 v0.14.5 (2015-08-06)

Enhancements:

• Add _clean method to DataMapper for whole-object cleaning.

• Make ModelDataMapper._clean call instance.full_clean.

Bug Fixes:

• Fix ModelDataMapper to not get confused by six.with_metaclass hacks.

• Fix ListMixin.ok_response to call self.multiple_response not self.list_response

8.2. History 53

django-nap Documentation, Release 0.40.0

8.2.24 v0.14.4 (2015-05-19)

Enhancements:

• Fix travis config

• Simplify AppConfig usage

• Switched from using Django’s HTTP reason phrases to Python’s.

• Tidied the abstractions of response helpers in django.rest.views.

• Added BaseListView and BaseObjectView to django.rest.views.

Bug Fixes:

• Use our own get_object_or_404 shortcut in ModelPublisher.

• Fixed rest.views to closer match RFC [Thanks Ian Wilson]

8.2.25 v0.14.3 (2015-02-17)

Ehancements

• JsonMixin.get_request_data will now handle form encoded data for PUT

• Change API for datamapper to separate _apply and _patch.

8.2.26 v0.14.2 (2015-01-23)

WARNING: Removed module

The module nap.exceptions has been completely removed.

Enhancements:

• Switched custom ValidationError / ValidationErrors to django’s ValidationError

• Added DataMapper library

• Added CBV mixins for composing API Views that use DataMappers

8.2.27 v0.14.1.1

Bug Fixes:

• Add required name attribute to AppConfig [thanks bobobo1618]

8.2.28 v0.14.1

Enhancements:

• Import REASON_CODES from Django

• Use Django’s JsonResponse if available, or our own copy of it.

• Unify all json handling functions into utils.JsonMixin

54 Chapter 8. Changelog

django-nap Documentation, Release 0.40.0

• Add RPCView introspection

• Use Django’s vendored copy of ‘six’

• Add new runtests script

Bug Fixes:

• Cope with blank content encoding values in RPC Views

• Raise a 404 on invalid page_size value

• Validate the data we got in RPC View is passable as **kwargs

• ISO_8859_1 isn’t defined in older Django versions

• Emulate django template lookups in digattr by ignoring callables flagged ‘do_not_call_in_templates’

8.2.29 v0.14.0

WARNING: API breakage

A large reorganisation of the code was undertaken.

Now there are 3 major top-level modules: - serialiser - rest - rpc

Enhancements:

• Added functional RPC system [merged from django-marionette]

• Made most things accessible in top-level module

8.2.30 v0.13.9

Enhancements:

• Added Django 1.7 AppConfig, which will auto-discover on ready

• Added a default implementation of ModelPublsiher.list_post_default

• Tidied code with flake8

Bug Fixes:

• Fixed use of wrong argument in auth.permit_groups

8.2.31 v0.13.8

Enhancements:

• Added prefetch_related and select_related support to ExportCsv action

• Added Field.virtual to smooth changes to Field now raising AttributeError, and support optional fields

8.2. History 55

django-nap Documentation, Release 0.40.0

8.2.32 v0.13.7

Enhancements:

• Added ReadTheDocs, and prettied up the docs

• Use Pythons content-type parsing

• Added RPC publisher [WIP]

• Allow api.register to be used as a decorator

• Make Meta classes more proscriptive

• Allow ModelSerialiser to override Field type used for fields.

• Added ModelReadSerialiser and ModelCreateUpdateSerialiser to support more complex inflate scenarios [WIP]

Bug Fixes:

• Fixed ExportCsv and simplecsv extras

• Raise AttributeError if a deflating a field with no default set would result in using its default. [Fixes #28]

• Fixed auto-generated api_names.

• Purged under-developed ModelFormMixin class

8.2.33 v0.13.6

Enhancements:

• Overhauled testing

• Added ‘total_pages’ to page meta.

• Added Serialiser.obj_class

8.2.34 v0.13.5.1

Bug Fixes:

• Fix fix for b” from last release, to work in py2

8.2.35 v0.13.5

Bug Fixes:

• Fix use of b” for Py3.3 [thanks zzing]

Enhancements:

• Add options to control patterns

8.2.36 v0.13.4

Bug Fixes:

• Return http.NotFound instead of raising it

Enhancements:

56 Chapter 8. Changelog

django-nap Documentation, Release 0.40.0

• Added views publisher

• Updated docs

• Re-added support for ujson, if installed

• Tidied up with pyflakes/pylint

• Added Publisher.response_class property

8.2.37 v0.13.3

Bugs Fixed:

• Make API return NotFound, instead of Raising it

• Remove bogus CSV Reader class

8.2.38 v0.13.2.1

Bugs Fixed:

• Fixed typo

• Fixed resolving cache in mixin

8.2.39 v0.13.2

Enhancements:

• Separate Publisher.build_view from Publisher.patterns to ease providing custom patterns

• Added SimplePatternsMixin for Publisher

• Added Publisher.sort_object_list and Publisher.filter_object_list hooks

8.2.40 v0.13.1

Bugs Fixed:

• Fixed silly bug in inflate

8.2.41 v0.13.0

WARNING: API breakage

Changed auto-discover to look for ‘publishers’ instead of ‘seraliser’.

Enhancements:

• Added Field.null support

• Now use the Field.default value

• ValidationError handled in all field and custom inflator methods

8.2. History 57

django-nap Documentation, Release 0.40.0

8.2.42 v0.12.5.1

Bugs Fixed:

• Fix mistake introduced in 0.12.3 which broke NewRelic support

8.2.43 v0.12.5

Bugs Fixed:

• Restored Django 1.4 compatibility

Enhancements:

• Allow disabling of API introspection index

8.2.44 v0.12.4

Bugs Fixed:

• Fixed filename generation in csv export action

• Fixed unicode/str issues with type() calls

Enhancements:

• Split simplecsv and csv export into extras module

• Merged engine class directly into Publisher

• Added fields.StringField

8.2.45 v0.12.3

Bugs Fixed:

• Fix argument handling in Model*SerialiserFields

• Tidied up with pyflakes

Enhancements:

• Added support for Py3.3 [thanks ioneyed]

• Overhauled the MetaSerialiser class

• Overhauled “sandbox” app

• Added csv export action

8.2.46 v0.12.2

Enhancements:

• Support read_only in modelserialiser_factory

58 Chapter 8. Changelog

django-nap Documentation, Release 0.40.0

8.2.47 v0.12.1

Bugs Fixed:

• Flatten url patterns so object_default can match without trailing /

• Fix class returned in permit decorator [Thanks emilkjer]

Enhancements:

• Allow passing an alternative default instead of None for Publisher.get_request_data

• Added “read_only_fields” to ModelSerialiser [thanks jayant]

8.2.48 v0.12

Enhancements:

• Tune Serialisers to pre-build their deflater/inflater method lists, removing work from the inner loop

• Remove *args where it’s no helpful

8.2.49 v0.11.6.1

Bugs Fixed:

• Renamed HttpResponseRedirect to HttpResponseRedirection to avoid clashing with Django http class

8.2.50 v0.11.6

Bugs Fixed:

• Raise a 404 on paginator raising EmptyPage, instead of failing

8.2.51 v0.11.5.1

Bugs Fixed:

• Fix arguments passed to execute method

8.2.52 v0.11.5

Enhancements:

• Add Publisher.execute to make wrapping handler calls easier [also, makes NewRelic simpler to hook in]

• Allow empty first pages in pagination

• Added support module for NewRelic

8.2.53 v0.11.4

Enhancements:

• Make content-type detection more forgiving

8.2. History 59

django-nap Documentation, Release 0.40.0

8.2.54 v0.11.3

Enhancements:

• Make get_page honor limit parameter, but bound it to max_page_size, which defaults to page_size

• Allow changing the GET param names for page, offset and limit

• Allow passing page+limit or offset+limit

8.2.55 v0.11.2

Enhancements:

• Added BooleanField

• Extended tests

• Force CSRF protection

8.2.56 v0.11.1

Enhancements:

• Changed SerialiserField/ManySerialiserField to replace reduce/restore instead of overriding inflate/deflate meth-
ods

• Fixed broken url pattern for object action

• Updated fields documentation

8.2.57 v0.11

API breakage

Serialiser.deflate_object and Serialiser.deflate_list have been renamed.

Enhancements:

• Changed deflate_object and deflate_list to object_deflate and list_deflate to avoid potential field deflater name
conflict

• Moved all model related code to models.py

• Added modelserialiser_factory

• Updated ModelSerialiserField/ModelManySerialiserField to optionally auto-create a serialiser for the supplied
model

8.2.58 v0.10.3

Enhancements:

• Added python2.6 support back [thanks nkuttler]

• Added more documentation

60 Chapter 8. Changelog

django-nap Documentation, Release 0.40.0

• Added Publisher.get_serialiser_kwargs hook

• Publisher.get_data was renamed to Publisher.get_request_data for clarity

8.2.59 v0.10.2

Bugs Fixed:

• Removed leftover debug print

8.2.60 v0.10.1

Enhancements:

• Added Publisher introspection

• Added LocationHeaderMixin to HTTP classes

8.2.61 v0.10

Bugs Fixed:

• Removed useless cruft form utils

Enhancements:

• Replaced http subclasses with Exceptional ones

• Wrap call to handlers to catch Exceptional http responses

8.2.62 v0.9.1

Enhancements:

• Started documentation

• Added permit_groups decorator

• Minor speedup in MetaSerialiser

8.2.63 v0.9

Bugs Fixed:

• Fixed var name bug in ModelSerialiser.restore_object

• Removed old ‘may’ auth API

Enhancements:

• Added permit decorators

• use string formatting not join - it’s slightly faster

8.2. History 61

django-nap Documentation, Release 0.40.0

8.2.64 v0.8

Enhancements:

• Added create/delete methods to ModelPublisher

• Renamed HttpResponse subclasses

• Split out BasePublisher class

• Added http.STATUS dict/list utility class

Note: Because this uses OrderedDict nap is no longer python2.6 compatible

8.2.65 v0.7.1

Enhancements:

• Use first engine.CONTENT_TYPES as default content type for responses

8.2.66 v0.7

Bugs Fixed:

• Removed custom JSON class

Enhancements:

• Added Engine mixin classes

• Added MsgPack support

• Added type-casting fields

8.2.67 v0.6

Bugs Fixed:

• Fixed JSON serialising of date/datetime objects

Enhancements:

• Added index view to API

• Make render_single_object use create_response

• Allow create_response to use a supplied response class

8.2.68 v0.5

Enhancements:

• Added names to URL patterns

• Added “argument” URL patterns

62 Chapter 8. Changelog

django-nap Documentation, Release 0.40.0

8.2.69 v0.4

Enhancements:

• Added next/prev flags to list meta-data

• Added tests

8.2.70 v0.3

Enhancements:

• Changed to more generic extra arguments in Serialiser

8.2.71 v0.2

Bugs Fixed:

• Fixed bug in serialiser meta-class that broke inheritance

• Fixed variable names

Enhancements:

• Pass the Publisher down into the Serialiser for more flexibility

• Allow object IDs to be slugs

• Handle case of empty request body with JSON content type

• Added SerialiserField and ManySerialiserField

• Added Api machinery

• Changed Serialiser to use internal Meta class

• Added ModelSerialiser class

8.2.72 v0.1

Enhancements:

• Initial release, fraught with bugs :)

8.2. History 63

django-nap Documentation, Release 0.40.0

64 Chapter 8. Changelog

CHAPTER 9

Indices and tables

• genindex

• modindex

• search

65

django-nap Documentation, Release 0.40.0

66 Chapter 9. Indices and tables

Index

Symbols
_apply() (Mapper method), 27
_clean() (Mapper method), 27
_field_names (Mapper attribute), 27
_fields (Mapper attribute), 27
_patch() (Mapper method), 27
_reduce() (Mapper method), 27

A
accepted_response() (MapperMixin method), 34
accepted_status (MapperMixin attribute), 33

C
content_type (MapperMixin attribute), 33
context_field (built-in class), 26
created_response() (MapperMixin method), 34
created_status (MapperMixin attribute), 33

D
delete_valid() (ObjectDeleteMixin method), 35
deleted_response() (MapperMixin method), 34

E
empty_response() (MapperMixin method), 34
error_response() (MapperMixin method), 34
error_status (MapperMixin attribute), 33
exclude (Meta attribute), 30

F
Field (built-in class), 26
field (built-in class), 25
fields (Meta attribute), 30

G
get_mapper() (MapperMixin method), 34
get_meta() (MapperMixin method), 34

L
ListBaseView (built-in class), 34

ListGetMixin (built-in class), 34
ListMixin (built-in class), 34
ListPostMixin (built-in class), 34

M
Mapper (built-in class), 27
mapper_class (MapperMixin attribute), 33
MapperMixin (built-in class), 33
Meta (built-in class), 30
model (Meta attribute), 30
multiple_response() (MapperMixin method), 34

O
ObjectBaseView (built-in class), 35
ObjectDeleteMixin (built-in class), 35
ObjectGetMixin (built-in class), 35
ObjectMixin (built-in class), 35
ObjectPatchMixin (built-in class), 35
ObjectPutMixin (built-in class), 35
ok_response() (ListMixin method), 34
ok_response() (ObjectMixin method), 35
ok_status (MapperMixin attribute), 33

P
patch_invalid() (ObjectPatchMixin method), 35
patch_valid() (ObjectPatchMixin method), 35
post_invalid() (ListPostMixin method), 34
post_valid() (ListPostMixin method), 34
put_invalid() (ObjectPutMixin method), 35
put_valid() (ObjectPutMixin method), 35

R
readonly (Meta attribute), 30
RelatedField (built-in class), 27
required (Meta attribute), 30
response_class (MapperMixin attribute), 33

S
single_response() (MapperMixin method), 34

67

	Quick Start
	Mapper/Views Quick Start

	Tutorials
	Installation
	Mappers
	Views
	Authorisation
	Old Mapper Tutorial

	Mappers
	Fields
	Mapper API
	field decorator: get/set
	Mapper functions
	ModelMappers

	Class-Based Views
	Base Classes
	List Classes
	Single Object Classes

	RPC
	Overview
	Usage

	Extras
	HTTP Utilities
	Simple CSV
	Actions

	Examples
	Case 1: Simple Blog API
	Case 2: Login View

	Changelog
	Current
	History

	Indices and tables
	Index

